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Computation of the water density distribution at the ice-water interface using the
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The water density distribution at an ice-Ih-water interface is computed by means of the expan-
sion of the n-particle potentials of mean force (PMF) in terms of lower-order PMF’s truncated at the
triplet level. Pair and triplet correlations for the simple point-charge water model are computed via
Monte Carlo (MC) simulations. The distributions obtained are in very good agreement with exten-
sive MC simulations of the interface. The PMF-expansion technique is orders of magnitude faster
than the simulations and provides a powerful tool for the study of complex interfacial phenomena

involving aqueous phases.

PACS number(s): 68.45.—v, 61.20.Gy, 61.25.Em, 82.65.Dp

I. INTRODUCTION

The physical properties of solid-liquid interfaces are of
great theoretical and practical interest. Many important
processes such as melting, nucleation, crystal growth,
chemical reactions, and catalysis take place at interfaces
involving aqueous phases. In addition, phenomena at
biomolecule-water interfaces play a central role in bio-
logical systems. However, in the case of nonsimple lig-
uids, the theoretical description using integral equations
and related techniques is seriously hampered owing to
the molecular structure of the particles. Unfortunately,
computer simulations are also rather limited due to the
complexity of most systems of practical interest requir-
ing CPU times much too long to be useful in large-scale
investigations of important processes.

An important example is the ice-water interface where,
due to the complexity of water as a liquid, even the study
of the bulk water phase is a nontrivial task. Recently, a
density-functional theory was devised to study the freez-
ing of water using an interaction-site description of the
molecule [1]. Also, the density-functional method has
been used to study liquids with multipolar interactions
[2]. Systems comprising ice and water were analyzed in
a series of computer simulation studies using clusters [3],
periodic boundary conditions in all directions [4-6], and
a slab geometry [7].

Here we apply a relatively simple, efficient, and ex-
tremely fast method to calculate the density profile at
the ice-water interface. Because of its generality, the
method can easily be extended to more complex cases.
The approach is based on the expansion of the n-particle
potentials of mean force (PMF) in terms of lower-order
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PMF’s [8], truncated at the three-atom correlation level.
The conditional density at the ice surface is expressed in
terms of atom correlation functions up to triplet level of
bulk water. The water pair and triplet correlations are
calculated by a Monte Carlo (MC) simulation of bulk
water, using a model with molecular details. The quan-
titative validity of our approach is tested by comparing
the water density profiles obtained to those obtained via
extensive computer simulation for the same model ice-
water interface. A much simpler version of the formalism
employing the restricted primitive model of electrolytes
and truncating the ionic correlations at the pair level was
used by our group to estimate ionic densities around var-
ious DNA conformations [9,10].

II. POTENTIALS OF MEAN FORCE EXPANSION

In a simple monoatomic liquid, with n particles fixed
at positions ry,...,r,, the effective one-particle density
p™1) at a point r is given by

g™t (r,rq,...,1p)
g(n)(rlv s »r‘n)

’ (1)
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where g(®) is the n-particle correlation function and p is
the bulk density. The expansion of the n-particle PMF’s
defined by

Wm(ry,... 1) = —kBTlng(")(rl,...,rn) (2)

in terms of lower order PMF’s yields
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Combining Egs. (1) and (2), and retaining terms up to the triplet level in the PMF expansion Eq. (3) we obtain an
expression for the conditional density in terms of two- and three-particle correlation functions,

n n--1
P (eler, . orn) = p [ 9P () ]
=1 7j=1

Truncation of Eq. (3) at the pair level corresponds to
the Kirkwood superposition approximation (KSA) [11]
for the triplet correlation function,

g (ry,r9,13) = ¢ (r1,12)gP (r2,13)g P (r3,71) : (5)

retaining the triplet contribution is equivalent to the
Fisher-Kopeliovich superposition approximation [12] for
the four-particle correlation function,

H g®
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It is also possible to calculate particle-particle corre-
lations in inhomogeneous systems using the PMF ex-
pansion formalism. (For example, pair correlations are
needed to calculate thermodynamic quantities such as
the surface tension [13].) This is accomplished by fac-
torizing the two-particle density in terms of conditional
one-particle densities that can be calculated using Eq.

(4).
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To model an ice-water interface, we fix n water oxygens
at ideal ice Ih lattice positions ry,...,r,, but we do not
specify the molecular orientations of the water molecules.
The n water molecules in the ice configuration are then
embedded in liquid water. An increase of disorder in the
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ice layers near the interface is restricted to the reorien-
tation of water hydrogens, giving some flexibility in the
formation of the hydrogen bond network. This some-
what simplified picture of the interface with perfectly
ordered oxygens allows a simpler theoretical treatment.
Nevertheless, it is realistic enough to describe relevant
properties of the real ice-water interface. It should be
stressed that even the quite flexible computer simulation
methodology faces serious difficulties in the case of in-
homogeneous interfacial systems with coexisting phases,
one of which is the problem of keeping two phases stable
under periodic boundary conditions and for a compara-
bly small number of particles. Moreover, much of the
theoretical analysis of interfacial systems at an atomic
level has been limited to strongly simplified cases such as
hard walls modeling the solid phase.

A possible way to relax the assumption of fixed po-
sitions of the oxygen atoms is to introduce an addi-
tional averaging over weighted oxygen positions in the
ice phase. For example, the positions of the oxygens can
be drawn from Gaussian distributions around the lattice
sites with widths corresponding to the experimentally ob-
served thermal fluctuations in bulk ice [14]. However, in
order to have well-defined conditions that allow a con-
clusive comparison with computer simulation data for an
equivalent system, we here restrict our analysis to the
model of fixed oxygen atoms.

As in the case of simple liquids, the oxygen and hy-
drogen density distributions can be expressed in terms of
oxygen and hydrogen pair and triplet correlation func-
tions. For the oxygen and hydrogen density (X=O,H)
we obtain

3
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In the case of water, it is essential to include the triplet
correlations since the preference for tetrahedral, ice-
like water configurations with oxygen distances of about
0.275, 0.275, and 0.45 nm definitely leads to deviations
from the simple pair picture suggesting equilateral trian-
gles with distances of 0.275 nm to be prevalent. Using
the proposed method, studies of various configurations of
fixed water molecules can easily be undertaken. Further-
more, the extension of Eq. (8) to the case with hydrogen
atoms kept at particular positions in space is straightfor-
ward.

III. COMPUTER SIMULATIONS

In order to obtain pair and triplet correlation func-
tions of liquid water, computer simulations of bulk water

have to be performed since experiments give only lim-
ited access to these quantities. Especially to compute
the triplet correlations, quite extensive calculations are
necessary. However, these computations have to be done
only once (for given p and T'), and the data can then be
used for different applications.

The first computations of triplet correlations in water
[15] were perfomed using the ab initio Niesar-Clementi-
Corongiu water model [16]. In the present study we
use the simpler but also satisfactory simple point-charge
(SPC) water model [17]. Interaction site descriptions of
water such as the SPC model with partial charges dis-
tributed on the molecules are able to reproduce basic
properties of liquid water reasonably well. In particu-
lar, a complex network of hydrogen bonds characteristic
for associated liquids is formed. Samples of model water
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molecules also show a dielectric screening behavior cor-
responding to liquid water, although the actual dielectric
constants of different models vary considerably. The SPC
model is known to yield good results for many structural,
dynamic, and thermodynamic quantities despite its sim-
plicity. It is a rigid water model built of one oxygen and
two hydrogen interaction sites with an O-H bond length
of 0.1 nm and an ideally tetrahedral H-O-H bond angle
(109.47°). Partial charges go = —0.82e and gy = 0.41e
are placed on the oxygen and hydrogen sites, respectively.
In addition, there is a Lennard-Jones interaction between
oxygens. (For a discussion of different water models see,
e.g., Ref. [18].)

Configuration space averaging was done using the
Metropolis Monte Carlo method [19]. The system con-
sisted of 256 water molecules with a particle density of
p = 33.33 nm~3 and a temperature of T = 298 K. The
simulation box used was a rhombic dodecahedron. The
Coulomb interactions were treated with a generalized
reaction-field (GRF) scheme briefly described in the fol-
lowing using an atom-atom cutoff of r. = 0.9 nm and a
background dielectric constant of egr = 65, which is the
approximate value for bulk SPC water [20,21].

The GRF, like previous attempts to devise effective
and accurate modified r-dependent Coulomb interactions
for liquid systems under periodic boundary conditions
[22-26], tries to mimic the effective screening of the
bare Coulomb interaction in polar and ionic systems.
This screening results from the preference of oppositely
charged particles in the surrounding of ions and charged
sites. It is most effective in a system of high charge den-
sity. In the GRF scheme, of which a detailed description
and analysis will be given elsewhere [27], charges ¢; and
g; (Gaussian units) in distance r are subject to a modified
Coulomb interaction u(r) = q;q;$(r),

¢(r):l<1~L)4(1+ﬁ+2jﬁ)9(7‘¢—1‘), (9)

r Te 5r. 512

where O(r) is the Heaviside unit step function. ¢(r)
is the interaction of two unit charges +1 surrounded
by background charges —1 and +1, respectively, ho-
mogeneously distributed in spheres with radius r./2,
when all interactions (charge-charge, charge-background,
and background-background) are counted. The total
Coulomb energy in a molecular system is

U.= Z Z qia‘IquS(riaja) + % Z Zqiaqiﬁ
a,(

i,k a,B i
1< j
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where a and (3 are charged sites on molecules i and j.
M is the total dipole moment of the system and V its
volume. The last term corrects the background dielectric
constant from infinity to err [28]. The GRF Coulomb
interaction ¢(r) is of short range and strongly screened.
Both ¢(r) and its derivatives up to third order vanish at
T = r.. In addition, ¢(r) and its derivatives are monotone
and of alternating sign, exactly like the bare Coulomb
interaction 1/r.

In computer simulations of polar and charged systems,
the GRF scheme allows an efficient calculation of the
Coulomb energy, since only a short-range r-dependent
function has to be evaluated, which can be tabulated.
The GRF was successfully applied in the study of elec-
trolytes, where it compared perfectly with Ewald sum-
mation at various ionic concentrations. Studies of pure
water, one component plasmas, and restricted primitive
model electrolytes yielded excellent structural (pair and
angular correlations) and thermodynamic results [27]. As
will be shown in the following, also in the case of in-
homogeneous aqueous systems the GRF gives results in
agreement with Ewald summation. Here the GRF was
used in order to allow a much less time consuming calcu-
lation of the electrostatic interactions than with Ewald
summation [29].

The methods used for computing pair and triplet cor-
relations were discussed in Ref. [30]. Bin widths of 0.005
and 0.02 nm, respectively, were used. The correlations
were sampled for pair distances up to 1.1 and 0.72 nm,
respectively. The initial configuration was a random dis-
tribution of randomly oriented water molecules. The sys-
tem was equilibrated for 50000 passes (one attempted
move per particle). The production run then extended
over additional 170000 MC passes.

To provide reliable density data for the ice-water in-
terface, against which the results of the proposed PMF
expansion method could be tested, a series of MC simu-
lations of the interfacial system was performed. This was
accomplished by positioning 240 water oxygens at ice Ih
lattice sites in a rectangular box. The z and y dimen-
sions of the box were chosen to be consistent with the
ice lattice (L, = 2.245 nm and L, = 2.333 nm with an
oxygen separation of 0.275 nm). The two basal planes of
the ice were oriented normal to the z axis and in contact
with liquid water. The z thickness of the ice layer was
1.192 nm. Periodic boundary conditions were applied in
all directions.

The z dimension of the box was chosen such that the
overall density including the ice water molecules was
p = 33.33 nm~3. For total numbers of particles of
N = 600 and 1000 this results in L, = 3.436 and 5.726
nm, respectively. Both phases were kept at a tempera-
ture of T = 298 K. In principle, the study could have
been done at any temperature, e.g., the temperature of
coexisting phases for the water model employed here (see
Ref. [6]).

Four simulations with different characteristics were
performed. In three of the simulations, the GRF model
used in the water triplet calculations was applied with
atom-atom cutoffs of r. = 0.9 and 0.8 nm, respectively.
In one of the reaction field runs the number of particles
was set to N = 1000; in all others 600 particles were
used.

Also an Ewald summation technique [31] was used in
a simulation employing 600 particles to avoid possible
ambiguities arising from the treatment of the Coulomb
interaction in the inhomogeneous system. The real space
damping factor was set to n = 5.6/L,. The k-space cut-
off was set to k? < 22(2mw/L.)?, resulting in 2 x 343 k
vectors considered. The r-space cutoff was r. = 0.93 nm



594 GERHARD HUMMER AND DIKEOS MARIO SOUMPASIS 49

and applied atomwise. In all simulations, the background
dielectric constant was set to egp = 65.

In the case of the N = 600 and 1000 simulations with
GRF Coulomb interaction and r, = 0.9 nm, the starting
configurations were randomly distributed mobile water
molecules. All water molecules were randomly oriented.
The two other simulations started from the final con-
figuration (after 200000 passes) of the N = 600 GRF
simulation with 7. = 0.9 nm. Averages were taken every
tenth pass after 50000 passes of equilibration. In Table
I the characteristics of the simulations are compiled.

IV. RESULTS AND DISCUSSION

In Fig. 1 the oxygen and hydrogen densities are de-
picted in units of the bulk density versus the z distance
of the closest basal plane of the ice layer. The outmost
oxygen atoms of the ice layer are at = = 0. The curves ob-
tained from the various MC simulations agree well within
the statistical errors, which are of the order of 0.1 at
the density peaks, as estimated from block averaging.
In particular, the Ewald and GRF simulation results do
not differ significantly. In the case of the oxygen den-
sity a strong peak at z = 0.26 nm is followed by several
steps reflecting the formation of water layers. However,
only the first peak is at a z value consistent with an ice
Ih lattice extending into the liquid. The structure be-
yond the first peak does not correspond with an ideal
ice-lattice behavior, for which the predicted peak posi-
tions are indicated as arrows in Fig. 1. The hydrogen
density also reflects the formation of a first icelike layer
of water molecules with the peaks at z = 0.17 and 0.30
nm in good agreement with the ideal lattice positions.
Again, the structure beyond the first layer is much less
distinct. But interestingly, peaks at z = 0.55 and 0.7 nm
agree quite well with ideal lattice values.

Figure 1 also shows the results of the PMF expansion
using Eq. (8) up to pair and triplet level. In the calcu-
lation of the densities, the discrete pair and triplet data
for water were interpolated linearly. In order to take den-
sity averages at constant values of z, for every value of z,
10 000 points were randomly chosen in a hexagon perpen-
dicular to the z axis with the size corresponding to the ice
lattice. The pair-level truncation of the PMF expansion
yields only a crude picture due to the highly anisotropic
nature of the intermolecular interactions in water. It fails
especially in the case of the oxygen density at small z.
The first peak shown by the pair expansion is due to
the incorrect KSA prediction of equilateral triplets with

TABLE I. Characteristics of the ice-water interface MC
simulations. N is the particle number, L, is the z dimension
of the box, r. is the cutoff length, and Coulomb denotes the
treatment of the Coulomb interactions.

N L. (nm) Coulomb rc (nm) Passes
600 3.436 GRF 0.90 150000
600 3.436 GRF 0.80 50000
600 3.436 Ewald 0.93 50000

1000 5.726 GRF 0.90 90000

w

N
wl

[}

oxygen density

hydrogen density
O

FIG. 1. (a) Water-oxygen and (b) water-hydrogen density
at the ice-water interface in units of the corresponding bulk
densities. z denotes the z distance from the ice basal plane
defined as the outmost layer of oxygen atoms. Arrows indi-
cate the peak positions in the case of an ideal ice Ih lattice.
+, PMF expansion including only pairs; ¢, PMF expansion
including triplets. MC simulations: (—), GRF, N = 600,
re = 0.9 nm; (- -), GRF, N =600, r. = 0.8 nm; (---), GRF,
N = 1000, 7. = 0.9 nm; (---), Ewald, N = 600.

edges 0.275 nm and does not appear in the simulations.
The second peak is at the right position but too small.

However, inclusion of the triplet correlations drasti-
cally improves the quality of the results obtained from the
PMF expansion. Now both the position and the height
of the first peak of the oxygen density are reproduced
quantitatively correct. The first minimum is at a some-
what greater z distance, but even for distances between
0.35 and 0.7 nm, the PMF expansion shows qualitatively
correct behavior.

The PMF expansion also correctly reproduces the hy-
drogen density for z values greater than 0.2 nm. The sec-
ond, strong peak is at the right position and only slightly
too low. In addition, both the second minimum and the
third maximum are at the correct positions, with the
third maximum being somewhat too small. The peak at
z = 0.17 nm is too small. We ascribe the discrepancies
in this region mainly to problems with the discretization
of the correlation functions. Within the resolution of the
triplet correlations of 0.02 nm, ggl?{('r) jumps from ap-
proximately 0.03 at » = 0.15 nm to 1.08 at 0.17 nm. But
also sampling problems of the triplet correlation func-
tion have to be considered, which are most prominent
at small distances. The hydrogen density for z < dog
(dog = 0.1 nm is the O-H bond length of the SPC wa-
ter model) is also affected by intramolecular correlations.
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However, these were not considered in the calculation of
the correlation functions. Therefore, the hydrogen den-
sity data for z < 0.1 nm, describing the distribution of
the hydrogens belonging to ice molecules, are not prop-
erly represented.

For z 2 0.4 nm the computer simulation data for the
oxygen and hydrogen densities exhibit somewhat more
structure than the PMF expansion results. The devi-
ations can only partly be ascribed to statistical noise
present in the simulation data. The quadruplet and
higher-order correlations are expected to add some cor-
rections to the PMF density curves. However, with the
available theoretical tools they cannot be calculated nor
are they readily accessible from simulations with satis-
factory statistical accuracy. A comparably practicable
way to obtain the quadruplet correction is to compute
the conditional density p(®%)(r|r;,rs,r3) in a simulation
by constraining the pair distances of particles 1, 2, and 3.
This has to be done only for the smallest triangles in the
basal plane, particularly the one with edges 0.275, 0.275,
and 0.449 nm, which is expected to give the largest con-
tribution to the quadruplet correction. p®1) is related
to the four particle correlation function through

g(4) (I‘, ry,rz, 1'3)
g (ry,ra,r3)

(11)

PV (r|ry,re,r3) = p

Interestingly, independent of system size and Coulomb
interaction model (Ewald summation and GRF), the
computer simulation curves for the oxygen and hydro-
gen densities show shallow minima quite far from the ac-
tual interface at z = 0.75 and 0.8 nm, respectively. The
PMF expansion indeed yields corresponding minima at
the right positions but less distinct. However, since wa-

ter triplet data were only available for triangles with all
three edges smaller than 0.72 nm, the triplet correction
was not applicable in this region.

V. CONCLUDING REMARKS

The study of inhomogeneous aqueous systems is of
great importance for the physical description of biologi-
cal systems and of condensed matter. Using an approach
based on an expansion of the n-particle PMF’s, we cal-
culated the oxygen and hydrogen density profile at the
ice-water interface. Computer simulation data for the
same system were quantitatively reproduced. However,
the calculation of density distributions using the PMF
expansion formula is about 10% to 10* times faster than
computer simulations of the interfacial system, which re-
quire typically several days of CPU time. Another ad-
vantage of the method is that one can probe the den-
sity distribution completely locally, i.e., especially near
the region of interest. In addition to its computational
efficiency, we also want to emphasize the flexibility of
the approach. It is easily adapted to describing physical
properties of different inhomogeneous, aqueous systems.
Several applications of this method to biological systems
will be published in the near future.
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